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Abstract. The effects of saving and spending patterns on holding time distribution of money are investi-
gated based on the ideal gas-like models. We show the steady-state distribution obeys an exponential law
when the saving factor is set uniformly, and a power law when the saving factor is set diversely. The power
distribution can also be obtained by proposing a new model where the preferential spending behavior is
considered. The association of the distribution with the probability of money to be exchanged has also
been discussed.
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87.23.Ge Dynamics of social systems – 05.10.-a Computational methods in statistical physics and nonlinear
dynamics – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

During the last several years, methods and techniques
of statistical physics have been successfully applied to
economical and financial problems [1–3]. Recently, Some
econophysists have been paying attention to the statisti-
cal mechanics of money, theoretically or empirically [4–12].
They believe that a thorough understanding of the statis-
tical mechanics of the money, especially studying of the
distribution functions, is essential. Some pioneering work
along this line has been reviewed in a popular article [13].

As well known, the exploration of the distribution of
money can be traced back at least a century to the work
of the Italian social economist Vilfredo Pareto, who stud-
ied the distribution of income among people in different
western countries and found an inverse power law [14].
Recently this topic has been taken up with the emergence
of econophysicists among whom some believe that there
might be some physical and mathematical rules govern-
ing the distribution of income or wealth in the world and
attempt to discover them. A series of models have been
developed for the equilibrium money distribution based on
the analogy between market economics and kinetic theory
of gases [4–6,8,12]. Identifying exchange between any two
agents in a closed economy where the money is conserved
with the two-body elastic collision in an ideal gas, these
models show no matter how uniformly and forcefully one
distributes money among agents initially, the successive
tradings eventually lead to a steady distribution of money.
And the shape of money distribution is determined by the
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trading rule for choosing an amount of money to transfer.
Allowing agents to hold back some of their money when
they are chosen to trade, Chakraborti et al. introduced the
saving behavior into the model by adding a saving factor
s in the trading rule [6]. The simulation results clearly in-
dicate a robust Gibbs-like distribution where the density
of agents with money m decreases exponentially with m
for s = 0, which is identical to the result of Drăgulescu
and Yakovenko’s random two-agent exchanges model [5].
The distribution of money changes to follow asymmetric
Gibbs-like law when the fixed and uniform saving factor is
set to be nonzero, while a ‘critical’ Pareto distribution of
money is found when saving factor is set diversely among
agents [6–8].

In practice, money is held as a store of value, what is
more, it plays an essential role for being a medium of ex-
change. Money is transferred consecutively from hand to
hand in the exchange process, in which there exist time in-
tervals for money to be held. This kind of time interval was
ever called by Wicksell the “average period of idleness” or
“interval of rest” of money [15]. In our previous work [16],
we called it “holding time” of money and found that after
the economy has achieved an equilibrium state, there is
not only a distribution of money among agents, but also a
steady distribution over the holding time. We also found
that monetary velocity, an important macroeconomic vari-
able, which is associated with Irving Fisher [17], could be
expressed as the expectation of the reciprocal of holding
time.

In a basic ideal gas-like model, the distribution of
money over the holding time follows an exponential law,
where saving behavior is not taken into account. The
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purpose of this paper is to study how the introduction of
saving behavior affects such kind of distribution. In next
section, we make a brief review of the basic ideal gas-like
model by which our work can be erected and of the mea-
surement of the distribution of holding time. In Sections 3
and 4, we show that the uniform saving factor gives ex-
ponential distribution, while the diverse saving factor in-
duces a change to power distribution. Then we introduce
preferential spending behavior into the model in Section 5
and again obtain power distribution. Comparing these re-
sults, we can conclude that the formation of holding time
distribution is associated with the character of the prob-
ability of money to be exchanged.

2 An ideal gas-like market model
and holding time distribution

We begin with the basic ideal gas-like model which was in-
troduced firstly by Dragulescu and Yakovenko [5]. A close
economy is considered in the model where the amount of
money M is conserved and the number of agents N is
fixed. The money is possessed by agents individually and
agents can exchange money with each other. Since the
scale and initial distribution of money have no effect on
the final results, most of our simulations were carried out
with N = 250 and M = 25 000 and the amount of money
held by each agent was set to be M/N at the beginning.
The trade in the economy is modelled to take place round
by round. In each round, two agents, i and j for exam-
ple, are chosen randomly to get engaged in a trade among
which agent i is “receiver” and the other one j is “payer”.
The amount of money that changes hand ∆m is deter-
mined by trading rule which ensures that the amount of
any agent’s money is non-negative and the total money is
conserved. A trading rule commonly used can be expressed
as ∆m = ε(mi +mj)/2, where ε is a random number from
zero to unity. As for which units of money are chosen to
be transferred, all in the payer’s hand is equally probable.

In the ideal gas-like model, money is held by agents
and transferred frequently. In this process, if an agent re-
ceives money from other agents, he will hold it in hand
till paying it out to some other agents. The time interval
between the receiving and paying out is named as holding
time [16]. The holding times of a certain unit of money at
different moments or those of different units of money at a
given moment are not the same. We introduce the proba-
bility distribution function of holding time Ph(τ), which is
defined so that the amount of money whose holding time
lies between τ and τ + dτ is equal to MPh(τ)dτ . So, we
can get the normalization condition and the expression of
the expectation of holding time as follows:

∫ ∞

0

Ph(τ)dτ = 1 (1)

and
T =

∫ ∞

0

τPh(τ)dτ. (2)

Fig. 1. Schematic presentation of the sampling method of
holding time adopted: (a) in this paper; (b) in reference [16].
t0 denotes the sampling time point, the light horizontal solid
lines represent the evolution history of money, the vertical
short bars symbolize moments for corresponding money to be
transferred and then the dark segments correspond to the hold-
ing times to be recorded.

Fig. 2. The stationary holding time distribution obtained from
the basic ideal gas-like model simulations versus holding time.
The fitting in the inset indicates the distribution follows the
exponential law: Ph(τ ) = 1

T
exp(−τ/T ).

In the simulations, suppose it is at round t0 that we
start to record, and so, holding time is recorded as the
difference between the moments when the money takes
part in trade after t0 for the first two times. The recording
mode is illustrated in Figure 1a. Please note this mode
is different from what we have adopted in reference [16],
which is shown in Figure 1b. The measurement results of
the two modes seem quite different, however, they reflect
the same process in different ways. We adopt herein the
mode (a) solely to facilitate the exposition. The typical
distribution of holding time is shown in Figure 2. It can
been seen from the inset of Figure 2 that the distribution
of holding time follows an exponential law:

Ph(τ) =
1
T

e−
τ
T . (3)

This result indicates that the transferring process of
money is a Poisson process with intensity of 1

T .
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To get the distribution of holding time without system-
atic factor disturbing, we performed the simulations about
100 times with different random seeds and data were not
collected until the probability distribution of money got
stationary. And for convenience we stopped data collecting
after majority of money(>99.9%) had been recorded. In
all the following simulations, holding times are measured
in this way, after the distributions of money get stationary
of course.

3 Model with uniform saving factor

In reality, saving behavior is a natural action pattern for
any economic agent. In order to insure future consump-
tion, people always keep a part of their money as saving.
The ratio of the saving to total amount of money held
by an agent is called “marginal propensity to save” by
Chakrabarti’s group. The term of marginal propensity to
save has totally different meaning in economics, which is
defined as the partial derivative of saving function with
respect to income [18]. To avoid confusion, we rename
it as “saving factor”. Referring to the saving factor, two
cases have been considered by Chakrabarti’s group, one
is that all agents have a uniform saving factor, the other
one is that saving factors are randomly distributed among
agents [6,8]. As mentioned above, they found the equilib-
rium distributions of money among agents had remarkable
different characters under such two assumptions. Along
this line, in this section and the next one we shall exam-
ine the impacts of the saving behavior on the distribution
of holding time for the two cases respectively.

All the assumptions of the above ideal gas-like model
do work in this model. The amount of money is conserved
and the number of agents is fixed. Any agent’s money
is non-negative or no debt is allowed. The agents are in-
distinctive at the beginning of simulations: same initial
amount of money and same saving factor s. In each round,
an arbitrary pair of agents are chosen to make exchange
with each other. For example, at tth round, agent i and
j take part in trading, so that at (t + 1)th round their
money mi(t) and mj(t) change to

mi(t + 1) = mi(t) + ∆m; mj(t + 1) = mj(t) − ∆m; (4)

where

∆m = (1 − s)[(ε − 1)mi(t) + εmj(t)]; (5)

and ε is a random fraction. After a straight-forward sub-
stitution, it is obvious that the trading rule satisfies the
conservation and non-negativity condition, and each agent
saves fraction s of his money before trade.

The simulation results are shown in Figure 3, for some
values of s. It can be seen that the probability distribu-
tions of holding time for all saving factors decay exponen-
tially. And the lower the saving factor is, the steeper the
distribution curve. These results indicate this kind of sav-
ing behavior does not change the Poisson nature of the
exchanging process, but its intensity.

Fig. 3. The stationary distributions of holding time for several
saving factors from 0 to 0.9 derived from the simulations of the
model with uniform saving factor in the semi-logarithmic scale.
Note that in the figure the probabilities have been scaled by
the maximum probability respectively.

4 Model with diverse saving factor

In realistic economy, how much an agent saves depends
on the economic situations he or she faces, and the saving
factor of course varies from agent to agent due to their
different conditions. To get closer to reality, this model
inherits all the assumptions and evolution mechanism of
the previous model except that of uniform saving factor.
Each agent’s saving factor is initialized at the beginning
of simulations which distributes randomly and uniformly
within an interval 0 to 1, and is fixed in the simulations.
Correspondingly, the trading rule equation (5) changes to

∆m = (1 − si)(ε − 1)mi(t) + (1 − sj)εmj(t); (6)

where si, sj are the saving factors of agent i and j respec-
tively.

To our surprise, once the diverse saving factor is intro-
duced into the model, as shown in Figure 4, the holding
time distribution changes to obey a power law instead of
an exponential law. This result indicates that the transfer-
ring process of money in this model is not a Poisson pro-
cess any more. The Poisson nature of the process is broken
due to the loss of homogeneity of the money transferring.
In the previous model, for any saving factor, the proba-
bility of each unit of money to participate in exchanges
at any round is equal because the saving factor is set to
be uniform for all agents. On the contrary, in this model
the transferring probability of money is not the same any
more due to the diversity of the saving factors. This con-
clusion was verified by two further measurements on the
exchange process.

Firstly, we measured the correlation coefficient of
agents’ saving factors and the amount of money in their
hands. As shown in Figure 5, the correlation coefficient
increases sharply at the beginning of simulation, starts to
decrease slowly after about 2000th round. The reason of
the reduction is that the correlation coefficient can not
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Fig. 4. The stationary distribution of holding time derived
from the simulations of the model with diverse saving factor
in double logarithmic scale. The solid line is numerically fitted
line in the form of Ph(τ ) ∝ τ−1.14.

Fig. 5. Correlative coefficient between the amount of money
held by agents and their saving factors versus time. At time
t = 1541, the coefficient reaches its maximum 0.773.

pick up non-linear associations. We also found the cor-
relation coefficient falls to and keeps at about 0.32 after
500 000th round. Although the value of the correlation co-
efficient is not high enough, it still implies that the agents
with higher saving factors hold more money.

Secondly, we computed the average value of saving
factors over total money corresponding to their respec-
tive holders after the steady distribution of money among
agents had been observed. The value is 0.86 which certifies
again that there is more money in the hands of holders
with higher saving factors. The average value of saving
factors over the money transferred was also computed, its
value is about 0.52. This fact says that the money held
by agents with higher saving factor has lower probability
to take part in trade. If all money has equal probability,
combining with the fact that the agents with higher sav-
ing factors hold more money, it can be deduced that the
value of this kind of average saving factor should be about
0.86 all the time. Thus, we can conclude that the higher

the saving factor of a unit of money’s holder, the smaller
probability for it to be transferred.

5 Model with preferential spending
From the previous two models, we can see that differ-
ent saving patterns lead to different holding time distri-
butions. Especially, when the agents’ saving factors are
diverse, the probability of money to take part in trade
differs. Nevertheless, the probabilities of the money held
by the same one agent are equal to each other. This is
an implicit assumption in all the simulations which means
the money is homogenous to any agent. However, it is not
the case in real life. As the medium of exchange, money
changes hand to hand. In this circulation process, money
abrades unavoidably. And when agents make exchange,
the payers might spend their money with preference ac-
cording to the degree of abrasion. As a result, the money
is not homogenous for agents. To overcome this unrealistic
feature, we proposed a new model which is quite similar
to the model with uniform saving factor. The only alter-
ation is that the probability of money chosen to change
hand is not equal even if the money is held by the same
agent, in other words, that the agents spend money with
preference.

In each round, two agents, i and j, are chosen ran-
domly to participate in the trade. The amount of money
transferred is determined by equation (5). If agent i is the
payer, the probability of money k among mi to be trans-
ferred is given by:

p(k) =
lk + 1

mi∑
n=1

(ln + 1)

; (7)

where ln is the times that money n has participated in the
trade since the beginning of simulation. Here, we express
the probability with the sum of exchange times and 1 in-
stead of exchange times itself in case that denominator be
zero at the beginning of simulations.

The probability distributions of holding time for
several different saving factors are recorded after money
distributions reach stationary state which are shown in
Figure 6. All distributions obey power law, and the only
difference is the exponent.

The power distribution arises from the diversity of the
probability of money to participate in exchanges. At be-
ginning of our simulation, no money has ever taken part
in the trade, thus the probabilities are equal for all money
according to equation (7). After some units of money are
exchanged randomly, they have higher probabilities and
the others have relative lower ones. As the times of ex-
change increase, this slight diversity of money in the prob-
ability will be enlarged till a stable distribution is formed.
To see this process from another point of view, the longer
for one unit of money to wait, the lower probability for it
to be spent. In this way, comparing with the case with-
out preference, some money’s holding times get shorter,
while some get much longer. Thus the power distribution
appears.
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Fig. 6. The stationary distributions of holding time for several
uniform saving factors from 0 to 0.9 derived from the simu-
lations of the model with preferential spending in the double
logarithmic scale. Note that in the figure the probabilities have
been scaled by the maximum probability respectively.

We studied the holding time distribution at different
times, and found the power distribution is robust. For in-
stance, the holding time distribution for s = 0 still has
the power form even after t = 500 000. Contrarily to this,
it is just after t = 1000 that one can clearly observe the
steady distribution.

6 Conclusions

In this paper, the effects of saving and spending patterns
on the distribution of money over holding time are ex-
amined by computer simulations. All the simulations are
performed basing on the ideal gas-like models. We consider
two kinds of assumptions on saving pattern, one is that all
agents have uniform saving factor, the other one is that
the saving rates are set randomly distributed among the
agents. In the model with uniform saving factor, the distri-
bution of money over the holding time follows an exponen-
tial law, while in the model with diverse saving factor the
distribution changes to a power type. We further propose
a new trading model where the agents spend money with
preference and also get power distribution. The simulation
results indicate that the final distribution is determined by
the character of the probability that money is chosen to
participate in the trade.
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11. A. Drăgulescu, V.M. Yakovenko, Physica A 299, 213
(2001)
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